6.1: 24)

 $f^{-1}(x) = \frac{3x+1}{4-2x}.$

$$f^{-1}(x) = \frac{1}{2} + \sqrt{x + \frac{1}{4}}.$$

26)

48)

$$\frac{dy}{dx} = \frac{1}{\sqrt{1-\sin^2 y}} = \frac{1}{\sqrt{1-x^2}}.$$

6.3:

$$\begin{array}{l}
 68) \\
 x + 2y = 1 + \ln 2.
 \end{array}$$

6.4:

$$f(1/e) = (1/e) \ln(1/e) = -1/e.$$

82)

$$\frac{1}{2\ln 2}2^{x^2} + C.$$

86) πln10

6.6

36.
$$f(x) = \arcsin(e^x) \implies f'(x) = \frac{1}{\sqrt{1 - (e^x)^2}} \cdot e^x = \frac{e^x}{\sqrt{1 - e^{2x}}}$$

Domain
$$(f) = \{x \mid -1 \le e^x \le 1\} = \{x \mid 0 < e^x \le 1\} = (-\infty, 0].$$

$$\mathrm{Domain}(f') = \left\{ x \mid 1 - e^{2x} > 0 \right\} = \left\{ x \mid e^{2x} < 1 \right\} = \left\{ x \mid 2x < 0 \right\} = (-\infty, 0).$$

38)

$$y' = rac{1 + x^4y^2 + y^2 + x^4y^4 - 2xy}{x^2 - 2xy - 2x^5y^3}$$

40)

$$y = -\sqrt{3}x + \pi + \sqrt{3}.$$

6.8

- 2) a) indeterminate b) infinity c) infinity
- 4) a) indeterminate b) 0 c) indet. d) indet e) infinity f) indet
- 74) 0

- $y = 5e^{2x}$ 14)
- 16) 11:55 a.m.

66)
$$1-\frac{2}{\pi}\ln 2$$

$$\overline{56)} \quad \text{a)} \quad -\frac{1}{2}\cos^2 x + C \quad \text{b)} \quad \frac{1}{2}\sin^2 x + C \quad \text{c)} \quad -\frac{1}{4}\cos 2x + C \quad \text{d)} \quad \frac{1}{2}\sin^2 x + C$$

62)
$$\frac{3}{8}\pi^{2}$$

7.3:

- $ln(\sqrt{2}+1)$ 30)
- 40) Area inside circle and below parabola: $6\pi - \frac{4}{3}$ Area inside circle and above parabola: $2\pi + \frac{4}{3}$
- 44) 74.8%

10)
$$-\frac{1}{x}\sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) + C$$
22)
$$\sqrt{1 + (\ln x)^2} + C$$

22)
$$\sqrt{1 + (\ln x)^2} + C$$

7.6:

2)
$$\frac{\pi}{8}$$

7.8:

7.7:

22) n=20

Chapter 11 Even Answers

<u>11.1</u>

18)

Two possibilities are $a_n = \sin \frac{n\pi}{2}$ and $a_n = \cos \frac{(n-1)\pi}{2}$.

11.2

82)

If $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n\to\infty} a_n = 0$ by Theorem 6, so $\lim_{n\to\infty} \frac{1}{a_n} \neq 0$, and so $\sum_{n=1}^{\infty} \frac{1}{a_n}$ is divergent by the Test for

Divergence.

84)

If $\sum ca_n$ were convergent, then $\sum (1/c)(ca_n) = \sum a_n$ would be also, by Theorem 8(i). But this is not the case, so $\sum ca_n$ must diverge.

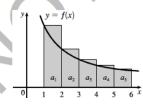
86)

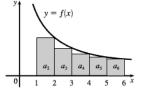
No. For example, take $\sum a_n = \sum n$ and $\sum b_n = \sum (-n)$, which both diverge, yet $\sum (a_n + b_n) = \sum 0$, which converges with sum 0.

11.3

From the first figure, we see that $\int_1^6 f(x) dx < \sum_{i=1}^5 a_i$. From the second figure, we see that $\sum_{i=2}^6 a_i < \int_1^6 f(x) dx$. Thus, we

have $\sum_{i=2}^{6} a_i < \int_{1}^{6} f(x) \, dx < \sum_{i=1}^{5} a_i$.





2)

40) n>e¹⁰⁰

<u>11.4</u>

2)

- (a) If $a_n>b_n$ for all n, then $\sum a_n$ is divergent. [This is part (ii) of the Comparison Test.]
- (b) We cannot say anything about $\sum a_n$. If $a_n < b_n$ for all n and $\sum b_n$ is divergent, then $\sum a_n$ could be convergent or divergent.

<u>11.5</u>

32) p>0

11.6

4) Absolutely Convergent

44) Converges for

11.7

2) C 4) D 6) C 8) AC 10) C 12) C 14) AC 16) D 18) CC 20) C 22) D 24) D 26) C 28) C 30) CC 32) D 34) D 36) C 38) D

11.8

30) a) C b) D c) C d) D

11.9

30)

11.10

50) 60)

<u>11.11</u>

18)

(a) $f(x) = \ln(1 + 2x) \approx T_3(x)$

$$0 \approx T_3(x)$$

= $\ln 3 + \frac{2}{3}(x-1) - \frac{4/9}{2!}(x-1)^2 + \frac{16/27}{3!}(x-1)^3$

(b) $|R_3(x)| \leq \frac{M}{4!} |x-1|^4$, where $|f^{(4)}(x)| \leq M$. Now $0.5 \leq x \leq 1.5 \Rightarrow$

$$-0.5 \le x - 1 \le 0.5 \quad \Rightarrow \quad |x - 1| \le 0.5 \quad \Rightarrow \quad |x - 1|^4 \le \frac{1}{16}$$
, and

letting x = 0.5 gives M = 6, so $|R_3(x)| \le \frac{6}{4!} \cdot \frac{1}{16} = \frac{1}{64} = 0.015625$.

<u>8.1</u>

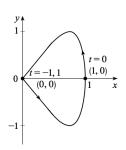
36) (a) (b) s increasing on $[0, \pi]$, x=0, π asymptotes

<u>8.2</u>

18) 28)

10.1

- **24.** (a) From the first graph, we have $1 \le x \le 2$. From the second graph, we have $-1 \le y \le 1$. The only choice that satisfies either of those conditions is III.
 - (b) From the first graph, the values of x cycle through the values from -2 to 2 four times. From the second graph, the values of y cycle through the values from -2 to 2 six times. Choice I satisfies these conditions.
 - (c) From the first graph, the values of x cycle through the values from -2 to 2 three times. From the second graph, we have $0 \le y \le 2$. Choice IV satisfies these conditions.
 - (d) From the first graph, the values of x cycle through the values from -2 to 2 two times. From the second graph, the values of y do the same thing. Choice II satisfies these conditions.
- **26.** When t=-1, (x,y)=(0,0). As t increases to 0, x increases from 0 to 1, while y first decreases to -1 and then increases to 0. As t increases from 0 to 1, x decreases from 1 to 0, while y first increases to 1 and then decreases to 0. We could achieve greater accuracy by estimating x- and y-values for selected values of t from the given graphs and plotting the corresponding points.

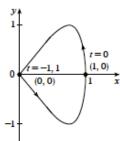


- **28.** (a) $x = t^4 t + 1 = (t^4 + 1) t > 0$ [think of the graphs of $y = t^4 + 1$ and y = t] and $y = t^2 \ge 0$, so these equations are matched with graph V.
 - (b) $y = \sqrt{t} \ge 0$. $x = t^2 2t = t(t-2)$ is negative for 0 < t < 2, so these equations are matched with graph I.
 - (c) $x=\sin 2t$ has period $2\pi/2=\pi$. Note that $y(t+2\pi)=\sin[t+2\pi+\sin 2(t+2\pi)]=\sin(t+2\pi+\sin 2t)=\sin(t+\sin 2t)=y(t)$, so y has period 2π . These equations match graph II since x cycles through the values -1 to 1 twice as y cycles through those values once.
 - (d) $x = \cos 5t$ has period $2\pi/5$ and $y = \sin 2t$ has period π , so x will take on the values -1 to 1, and then 1 to -1, before y takes on the values -1 to 1. Note that when t = 0, (x, y) = (1, 0). These equations are matched with graph VI.
 - (e) $x = t + \sin 4t$, $y = t^2 + \cos 3t$. As t becomes large, t and t^2 become the dominant terms in the expressions for x and y, so the graph will look like the graph of $y = x^2$, but with oscillations. These equations are matched with graph IV.
 - (f) $x = \frac{\sin 2t}{4 + t^2}$, $y = \frac{\cos 2t}{4 + t^2}$. As $t \to \infty$, x and y both approach 0. These equations are matched with graph III.

5B Chapter 10 Even Answers

10.1

24) a) III b) I c) IV d) II



28) a) V b) I c) II d) VI e) IV f) III