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36. f(z) = arcsin(e”) = f’(m) — ; = e

Domain(f) ={z|-1<e* <1} ={z|0<e” <1} = (—00,0].

Domain(f') = {z | 1 —€** >0} = {z | €** < 1} = {z | 2z < 0} = (—0o0,0).
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30)  In(2+1)
40)  Area inside circle and below parabola: 6m-4
Area inside circle and above parabola: 2n+%
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12) {2,1,-1,-2,-1, 1, ...}
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Two possibilities are an = sin % and an = cos w
11.2
68) , S=3
82)

If 3 an is convergent, then lim a, = 0by Theorem 6, so lim aL #0.andso Y aLisd.ivergmtbytheTestfot
n—oo

n=1 n—00 An n=1 Gn

Drvergence.

84)
If )" ca, were convergent, then E(l/c)(ca,.) = Y an would be also, by Theorem 8(1). But this 1s not the case. so " can
must diverge.

86)
No. For example, take 3" a, = Y nand Y b, = 5 (—n). which both diverge, yet 3" (an + b,) = 3 0, which converges

with sum 0.

11.3

5 6
From the first figure, we see that ff f(z)dz < 3 a:i. From the second figure, we see that Y a: < ff f(z) dz. Thus, we
i=1 i=2

6 é
have 3 a: < [f f(z)dz <3 a:.
= =

2) of
34) a) b) )

40) n>e100
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(a) Ifan > by for all n, then Y an is divergent: [This is part (ii) of the Comparison Test.]
(b) We cannot say anything about Y~ an. If ap < b, foralln and 3 by, 1s divergent, then 3 a, could be convergent or

divergent.
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32) p>0
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4) Absolutely Convergent
44) Converges for
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30) a)C b)D ¢)C d)D
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@ f(z) = In(1 + 22) ~ Ts(x)
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=ln3+§(m—1)—?(m—1)2+m

3
st @D
() |Rs(z)| < % |z — 1|*, where |f(4)(z)‘ < M.Now05<z<15 =

—05<z-1<05 = |z—-1<05 = |z—1*< L, and

. . 6 1 1
letting z = 0.5 gives M = 6, so |R3(z)| < 11661 0.015 625.
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24. (a) From the first graph, we have 1 < z < 2. From the second graph, we have —1 < y < 1. The only choice that satisfies
either of those conditions is III.
(b) From the first graph, the values of z cycle through the values from —2 to 2 four times. From the second graph, the values
of y cycle through the values from —2 to 2 six times. Choice I satisfies these conditions.
(c) From the first graph, the values of z cycle through the values from —2to 2 three times. From the second graph, we have
0 <y < 2. Choice IV satisfies these conditions.
(d) From the first graph, the values of = cycle through the values from —2 to 2 two times. From the second graph, the values of

y do the same thing. Choice II satisfies these conditions.

26. Whent = —1, (z,y)'= (0,0). As t increases to 0, z increases from 0 to 1, y
while y first decreases to —1 and then increases to 0. As ¢ increases from 0 to 1, "
x decreases from 1 to 0, while y first increases to 1 and then decreases to 0. We ’1=(§))
could achieve greater accuracy by estimating z- and y-values for selected values 0 t:(OT:)’)l 1( , x

of ¢ from the given graphs and plotting the corresponding points.

28 (z=t'—t+1= (t4 +1) — ¢ > 0 [think of the graphs of y = t* 4+ 1andy = t] andy = t2 > 0, so these equations
are matched with graph V.

®)y=+t>0. z=1t>—2t=1t(t— 2)is negative for 0 < ¢ < 2, so these equations are matched with graph L.

(c) z = sin 2¢ has period 27/2 = . Note that
y(t + 2m) = sinft + 27 + sin 2(¢ + 27)] = sin(t + 27 + sin 2¢) = sin(¢ + sin 2t) = y(¢), so y has period 2.
These equations match graph II since x cycles through the values —1 to 1 twice as y cycles through those values once.
(d) z = cos 5t has period 27 /5 and y = sin 2¢ has period 7, so = will take on the values —1 to 1, and then 1.to —1, before y
takes on the values —1 to 1. Note that when ¢ = 0, (z,y) = (1, 0). These equations are matched with graph VI.

(€) x =t +sindt, y =t®> + cos3t. Astbecomes large, ¢ and t> become the dominant terms in the expressions for z and
y, so the graph will look like the graph of y = z2, but with oscillations. These equations are matched with graph IV.

)z = sin 2¢ _ cos2t As t — oo, z and y both approach 0. These equations are matched with graph III.
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